

Planning Stage Structural Report

Strategic Housing Development in Kilnahue, Gorey, Co. Wexford

March 2022

Waterman Moylan Consulting Engineers Limited Block S, East Point Business Park, Alfie Byrne Road, Dublin D03 H3F4 www.waterman-moylan.ie

Client Name:	Gerard Gannon Properties
Document Reference:	13-119.r019 Planning Stage Structural Report
Project Number:	13-119

Quality Assurance . Approval Status

This document has been prepared and checked in accordance with Waterman Groups IMS (BS EN ISO 9001: 2015 and BS EN ISO 14001: 2015)

Issue	Date	Prepared by	Checked by	Approved by
DRAFT/WiP	21 Oct 2021	Damien Kelly		
2	23 March 2022	Damien Kelly	Darragh Aiken	Mark Duignan

Comments

Disclaimer

This report has been prepared by Waterman Moylan, with all reasonable skill, care and diligence within the terms of the Contract with the Client, incorporation of our General Terms and Condition of Business and taking account of the resources devoted to us by agreement with the Client.

We disclaim any responsibility to the Client and others in respect of any matters outside the scope of the above.

This report is confidential to the Client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at its own risk.

Contents

1.	Introdu	uction	.1
	1.1	Scope	.1
2.	Site Co	onstraints	.2
	2.1	Site Access	.3
	2.2	Traffic Management	.3
	2.3	Adjacent residential Properties	.4
	2.4	Site Gradient	.4
3.	Struct	ural Concept	.5
	3.1	Substructures	.6
	3.1.1	Foundations for typology 1 and 2	.7
	3.1.2	Basement Structure for typology 1 & 4	.9
	3.1.3	Basement/Undercroft Waterproofing for typology 1 & 4	10
	3.1.4	Foundations for typology 3 & 41	11
	3.2	Superstructures1	12
4.	Const	ruction Methodology1	16
	4.1	Foundations Type 11	16
	4.2	Foundations Type 21	17
	4.3	Foundations Type 31	17
	4.4	Foundations Type 41	17
	4.5	Civil Works / Retaining Structures1	18
	4.6	Measures to Protect Adjacent/Nearby Structures2	22
5.	Fire Pr	rotection of the Structures	23
6.	Propos	sed Loadings	24
	6.1	Design Loadings and Service Movements2	<u>2</u> 4
	6.1.1	Vertical Loads	24
	6.1.2	Horizontal Loads	<u>2</u> 4
	6.1.3	Service Movements	<u>2</u> 4
	6.1.4	Loading Table (Subject to Final Confirmations of Superstructure)2	<u>2</u> 4

Planning Stage Structural Report

Strategic Housing Development in Kilnahue, Gorey, Co. Wexford

March 2022

Waterman Moylan Consulting Engineers Limited Block S, East Point Business Park, Alfie Byrne Road, Dublin D03 H3F4 www.waterman-moylan.ie

Client Name:	Gerard Gannon Properties
Document Reference:	13-119.r019 Planning Stage Structural Report
Project Number:	13-119

Quality Assurance – Approval Status

This document has been prepared and checked in accordance with Waterman Group's IMS (BS EN ISO 9001: 2015 and BS EN ISO 14001: 2015)

Issue	Date	Prepared by	Checked by	Approved by
DRAFT/WiP	21 Oct 2021	Damien Kelly		
2	23 March 2022	Damien Kelly	Darragh Aiken	

Comments

Disclaimer

This report has been prepared by Waterman Moylan, with all reasonable skill, care and diligence within the terms of the Contract with the Client, incorporation of our General Terms and Condition of Business and taking account of the resources devoted to us by agreement with the Client.

We disclaim any responsibility to the Client and others in respect of any matters outside the scope of the above.

This report is confidential to the Client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at its own risk.

Contents

1.	Introdu	uction	1
	1.1	Scope	1
2.	Site Co	onstraints	2
	2.1	Site Access	3
	2.2	Traffic Management	3
	2.3	Adjacent residential Properties	4
	2.4	Site Gradient	4
3.	Struct	ural Concept	5
	3.1	Substructures	6
	3.1.1	Foundations for typology 1 and 2	7
	3.1.2	Basement Structure for typology 1 & 4	9
	3.1.3	Basement/Undercroft Waterproofing for typology 1 & 4	10
	3.1.4	Foundations for typology 3 & 4	11
	3.2	Superstructures	12
4.	Consti	ruction Methodology	16
	4.1	Foundations Type 1	16
	4.2	Foundations Type 2	17
	4.3	Foundations Type 3	17
	4.4	Foundations Type 4	17
	4.5	Civil Works / Retaining Structures	18
	4.6	Measures to Protect Adjacent/Nearby Structures	22
5.	Fire Pr	rotection of the Structures	23
6.	Propos	sed Loadings	24
	6.1	Design Loadings and Service Movements	24
	6.1.1	Vertical Loads	24
	6.1.2	Horizontal Loads	24
	6.1.3	Service Movements	24
	6.1.4	Loading Table (Subject to Final Confirmations of Superstructure)	24

1. Introduction

1.1 Scope

Waterman Moylan has been appointed by Gerard Gannon Properties to provide Structural Consultancy Services for the proposed residential development off Kilnahue Lane, Gorey, Co. Wexford and to develop the scheme to Planning Stage.

The proposed development consists of a total of 421 no. residential units - comprising of 133 no. houses, 60 no. duplexes (30 no. duplex apartments and 30 no. duplex houses) and 228 no. apartments, 361m2 of Retail and Community and a Creche.

The main structural issues covered are as follows:-

- Develop an understanding of site constraints.
- Form of the new structures.
- Advise structural dimensions.
- Review of construction methodology in relation to the site constraints

2. Site Constraints

The site is located at the west of Gorey, Co. Wexford, with access to the site at the north from Gorey Hill/Kilnahue Lane and at the south west from Carnew Road (R725). The site is bounded by agricultural lands to the west, by Carnew Road (R725), residential properties and agricultural lands to the south and east, and by Gorey Hill / Kilnahue Lane to the north. The site location is indicated in Figure 1 below.

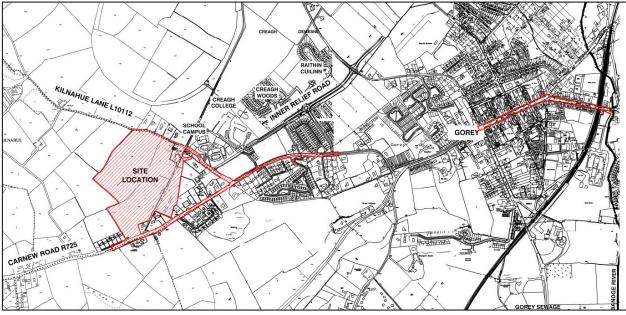


Figure 1 | Site Location (Source: Google Maps)

The subject site is a greenfield site. A topographic survey of the area generally shows a west to east fall across the site. The high point is approximately 133.5m OD Malin at the west of the site. The low point on the east of the site is approximately 101.5m OD Malin.

Figure 2 | Proposed site plan (source Connolly Architects)

2.1 Site Access

The site will be primarily accessed by via entrances on Carnew Road and Kilnahue Lane/Gorey Hill.

2.2 Traffic Management

Construction timings and methods, protection and potential temporary detours for both pedestrians and vehicles shall be studied prior to the commencement of construction activities. The Contractor shall agree and submit proposals to Wexford County Council for approval.

2.3 Adjacent residential Properties

The site is adjacent to several residential properties. Dilapidation surveys will need to be undertaken to these properties ahead of the works commencing, in addition to monitoring of noise and vibration during demolition and construction.

2.4 Site Gradient

In order to provide a rationalised layout for the site, material cut and fill of the existing levels will be required underneath the roads and structures. Where possible the vast majority of this material will remain on site. Should excess cut be produced this will be removed off site. Similarly, if additional fill is required this material will be imported to site.

3. Structural Concept

The structural scheme has been developed following review of the architectural planning drawings and analysis of floor spans and structural zones.

The structural concept varies between the different building typologies proposed for the development. Below is a table summarising the structures across the development.

Building	Code	Description		
Entry Apartments	EAB	Three storey apartment block		
10 Units		with penthouse.		
Housing Blocks 1	HB-1	Semi-detached and terrace		
15 Units		units.		
Housing Blocks 2	HB-2	Semi-detached and terrace		
14 Units	110-2	units.		
Small Block Duplex	DHB	Duplex apartment block.		
8 Units				
Urban & Block Housing	UBH 1-4	Torroop bouging units		
104 Units		Terrace housing units.		
Lower-Avenue		Three storey apartment blocks		
<u>Apartments</u>	LAB A, B, C, D	over lower level access cores.		
96 Units				
Mid-Avenue Apartments	MAB E, F, G, H	Four storeys apartment blocks with penthouse over		
112 Units	WW.B E, F, O, H	undercroft/basement		
Kilnahue Exit Building				
2 No. Community Rooms	XAB	Three storeys block, community		
2 No. Retail Units	AAD	and retail space at ground floor.		
10 No. Apartment Units				
Kilnahue Childcare		Two storey block incl. part		
Building		basement/lower ground floor		
Park Avenue Hybrid Duplex		Semi detached duplex block with		
52 Units	HYD	upper and lower level separate access		
52 01113				

Table 1 | Proposed buildings

3.1 Substructures

From an analysis of the anticipated building loads and the soil conditions described in the preliminary site investigation report, and in consideration of the cut and fill works required on the site, the proposed buildings have been divided into four different substructure typologies.

Building Description		Substructure Typology	Description
Entry Apartments 10 Units	Three storey apartment block with penthouse.	Туре 3	Reinforced Concrete Strip Footings under load bearing walls and columns.
<u>Housing Blocks 1</u> 15 Units	Semi-detached and terrace units.	Туре 3	Reinforced Concrete Strip Footings under load bearing walls.
<u>Housing Blocks 2</u> 14 Units			Pilecaps, piles and ground beams under load-bearing walls. Reinforced Concrete Strip Footings under load bearing walls
<u>Small Block Duplex</u> 8 Units	Duplex apartment block.	Туре 3	Reinforced Concrete Strip Footings under load bearing walls and columns.
<u>Urban & Block</u> <u>Housing</u> 104 Units	Terrace housing units.	Type 2* & Type 3 (Ground Level Varies)	Pilecaps, piles and ground beams under load-bearing walls. Reinforced Concrete Strip Footings under load bearing walls
Lower-Avenue Apartments 96 Units	Three storey apartment blocks over lower level access cores.	Туре 2	Pilecaps, piles and ground beams under load bearing walls and columns
<u>Mid-Avenue</u> <u>Apartments</u> 112 Units	Four storeys apartment blocks with penthouse over undercroft/basement	Туре 1	Pilecaps, piles and ground beams under load bearing walls and columns Basement/undercroft walls constructed in reinforced concrete.

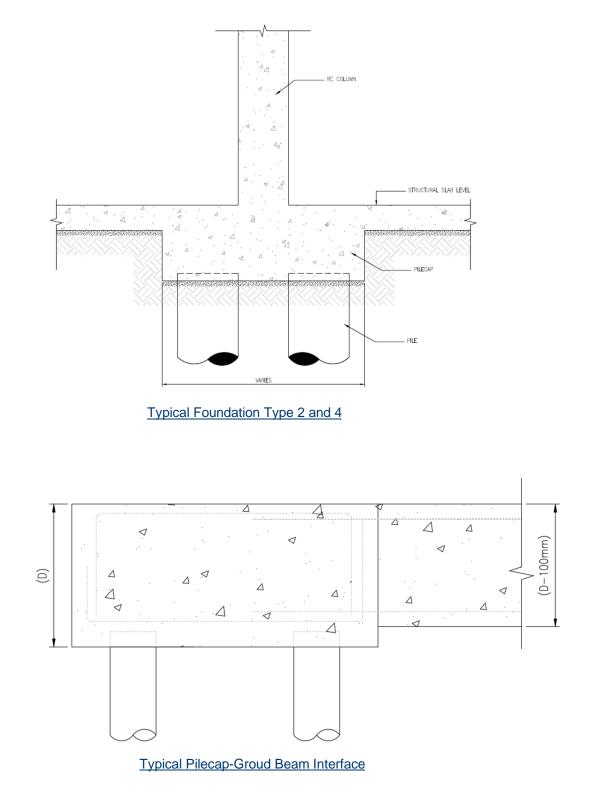
Kilnahue Exit Building 2 No. Community Rooms 2 No. Retail Units 10 No. Apartment Units	Three storeys block, community and retail space at ground floor.	Туре 2	Pilecaps, piles and ground beams under load bearing walls and columns
<u>Kilnahue Childcare</u> <u>Building</u>	Two storey block incl. part basement/lower ground floor	Туре 4	Reinforced Concrete Strip Footings under load bearing walls Basement/undercroft walls constructed in reinforced concrete.
<u>Park Avenue Hybrid</u> <u>Duplex</u> 52 Units	Semi detached duplex block with upper and lower level separate access	Туре 4	Reinforced Concrete Strip Footings under load bearing walls. Lower level retaining walls constructed in reinforced concrete.
Entry Apartments 10 Units	Three storey apartment block with penthouse.	Туре 3	Reinforced Concrete Strip Footings under load bearing walls and columns.

 Table 2 | Proposed Substructures

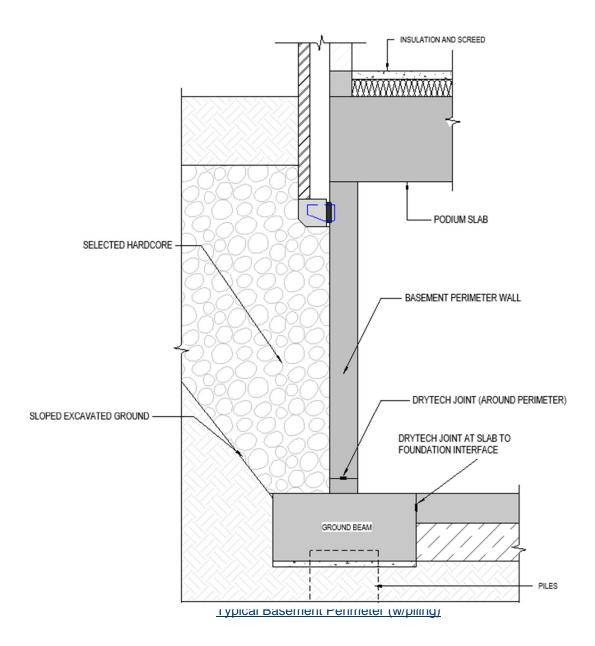
*Indicates that Piling for Type 2 for housing only may be replaced with Ground Improvement techniques and traditional strip foundations.

3.1.1 Foundations for typology 1 and 2

The soil conditions and anticipated building loads would require piled foundations. The proposed piles are to be conventional continuous flight auger (CFA) or rotary bored piles of 750mm diameter, subject to a site investigation, and will be designed to resist the vertical and horizontal loads from the structure above.


Rectangular reinforced concrete beams (Ground Beams) will span between pilecaps to support load bearing walls.

Type 1 is differentiated from Type 2 due to the additional need for basement/retaining walls. Typical basement wall details are provided in section 3.1.2.


Pile caps will be reinforced concrete cast in-situ elements designed to spread the building loads into the piles. The pile caps are typically 1000 to 1800m deep for 750mm diameter piles

- Typical Pile Cap dimension*: 2500x2500x1800mm deep square pilecap under columns.
- Typical Ground Beam dimension*: 700x900mm deep spanning between pilecaps.

*<u>Note</u>: Dimensions shown above are typical of what will be required but may be subject to change when more detailed Ground Investigation information or other information on site conditions becomes available.

8 Planning Stage Structural Report Project Number: 13-119 Document Reference: 13-119.r019 Planning Stage Structural Report

3.1.2 Basement Structure for typology 1 & 4

The perimeter of the basement will be constructed using reinforced concrete walls, 250-300mm thick.

For Type 4, foundations are reinforced concrete strip footings on mass concrete (leanmix) extending to the stiffer ground layers where necessary. For type 1 foundations are ground beams and pile caps.

Note: The basement footprint will not encroach on any tree root protection area.

3.1.3 Basement/Undercroft Waterproofing for typology 1 & 4

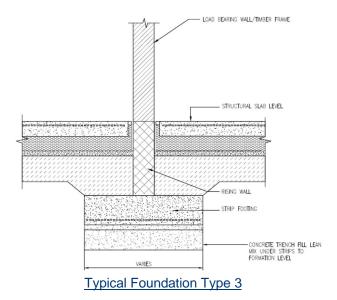
Requirement and details for basement waterproofing are shown by the Architect.

Grade	Example of use of structure ^{A)}	Performance level	
1	Car parking; plant rooms (excluding electrical equipment); workshops	Some seepage and damp areas tolerable, dependent o the intended use ^{B)} Local drainage might be necessary to deal with seepag	
2	Plant rooms and workshops requiring a drier environment (than Grade 1); storage areas	No water penetration acceptable Damp areas tolerable; ventilation might be required	
3	Ventilated residential and commercial areas, including offices, restaurants etc.; leisure centres	No water penetration acceptable Ventilation, dehumidification or air conditioning necessary, appropriate to the intended use	
reta air c	ined as its only difference from Grade 3 is th	o Grade 4 environments. However, this grade has not been le performance level related to ventilation, dehumidification or ons for the storage and exhibition of archival documents). The r similar to Grade 3.	

Table 2 Grades of waterproofing protection

all conditioning (see b) 5454 for recommendations for the storage and exhibition of archival documents). The storage and exhibition of archival documents). The storage and damp areas for some forms of construction can be quantified by reference to industry standards, such as the ICE's Specification for piling and embedded retaining walls [1].

Grades of Waterproofing Protection (extract from BS8102:2009)


In basement habitable areas, core lobbies, electrical rooms and lift-pits, the basement waterproofing performance will need to be BS 8102:2009 Grade 3. Elsewhere the basement will be designed for Grade 2.

Current proposals to achieve this required environment will be developed over the next stage. At this stage and for any preliminary cost plans we would suggest that a **%** hite tank+system by Rascor or Drytech is considered.

3.1.4 Foundations for typology 3 & 4

From the anticipated soil conditions, it is expected that the structure will be supported on shallow foundations. This will comprise in reinforced concrete strip footings on mass concrete (leanmix) extending to the stiffer ground layers where necessary.

The ground floor slabs are 150mm thick reinforced concrete and ground bearing. The slabs are formed on 50mm T3 Blinding with minimum 225mm T2 hardcore to SR:21 requirements.

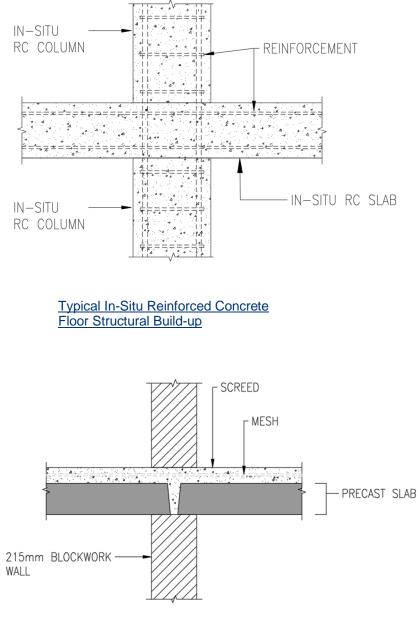
- Housing Blocks 1 & 2
 - Typical Strip Footings: 900 to 1500mm wide by 300mm deep*.
- Hybrid Duplex Apartment Blocks and Small Duplex Block
 - Typical Strip Footings: 900 to 1800mm by 300mm deep*.
- Entry Apartments
 - Typical Strip Footings: 900 to 2000mm by 300mm deep*.
- Childcare Building
 - Typical Strip Footings: 1200 to 1800mm by 300mm deep*.

*Note: Dimensions shown above are typical of what will be requires but may be subject to change when more detailed Ground Investigation information or other information on site conditions becomes available.

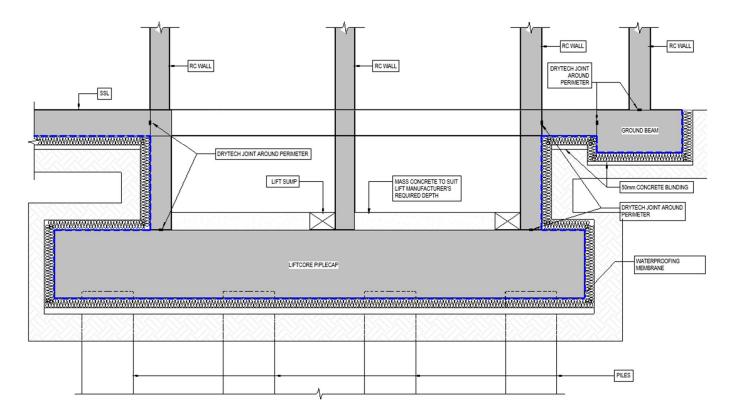
3.2 Superstructures

A material options study for the super-structure was undertaken for all the proposed building typologies and can be summarised as follows.

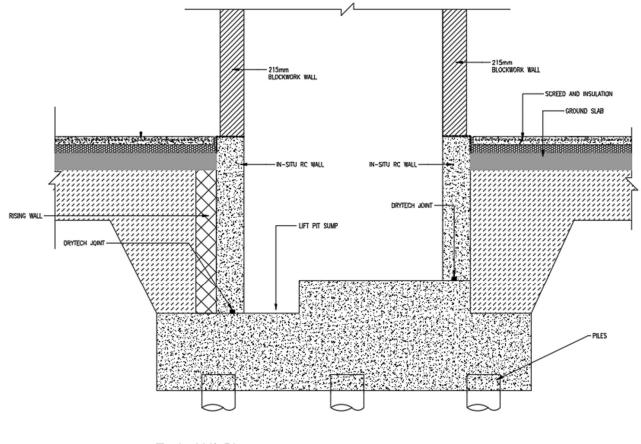
	Houses, Hybrid Duplex and Small Duplex Blocks						
	Framing Layout	Speed-of- Construction	Fire Resistance	Acoustic Performance	Vibration Performance		
Masonry Walls & Precast Concrete	Average	Average	Good	Good-Average	Good		
Timber Frame	Good	Good	Average	Average	Average		
Masonry Walls & Timber Floors	Good	Average	Average	Average	Average		


For the houses it is proposed to use either Masonry Walls and Timber Floors (Traditional build) or Timber Frame for the superstructure.

For the duplex apartment blocks, it is proposed to use Masonry Walls & Precast Floors for the superstructure, or a combination of Masonry Walls and Precast Floors for the ground floor unit and Timber Frame or Traditional Build for the unit above.

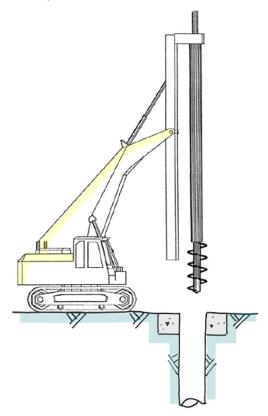

Entry & Exit Blocks, Lower & Mid Avenue Blocks						
	Framing Layout	Speed-of- Construction	Fire Resistance	Acoustic Performance	Vibration Performance	
Hybrid Precast Hollowcore & Crosswalls	Good	Good	Good	Good-Average	Good	
In-situ Concrete Frame	Good	Poor	Good	Good	Good	
Steel Frame & Precast Concrete	Good	Good	Average	Good-Average	Average	
Masonry Walls & Precast Concrete	Poor	Poor	Good	Good-Average	Good	

Mid Avenue, Exit Building: The proposed structure is to be an in-situ reinforced concrete frame due to the size and geometry of the blocks. This structure type will be overall lighter compared to precast wall or masonry wall structure and provides greater flexibility in reducing areas of transfer and to achieve the architectural intent.


Lower Avenue, Entry Building and Childcare: The proposed structure for these blocks is Masonry Walls and Precast Concrete due to the size of the building and the layout.

Typical Masonry Walls & Precast Concrete Floor Structural Build-up

<u>Typical Lift Pit</u> (In-Situ RC Frame Superstructure)



<u>Typical Lift Pit</u> (Masonry Walls & Precast Concrete Floor Superstructure)

4. Construction Methodology

4.1 Foundations Type 1

The sequence of works for the construction of the basement will be as follows:

Typical Piling Installation

- Excavate basement, secure excavation & Install Temporary Works (if required).
- Install Piling Mat & Temporary guide wall (if required)
- Install Piles
- Construct RC Ground Beams and Pile Caps
- Construct Basement RC Slab
- Construct Basement RC Walls and Columns
- Construct Podium/Transfer Slab

4.2 Foundations Type 2

The sequence of works for the construction of the type 2 foundations will be as follows:

- Excavate to foundation level
- Install Piling Mat & Temporary guide wall (if required)
- Install Piles
- Construct RC Ground Beams Beams and Pile Caps
- Construct masonry/concrete rising elements over the pile caps and ground beams.
- Place and compact approved granular fill to the underside of ground floor slab
- Construct RC Ground Floor Slab

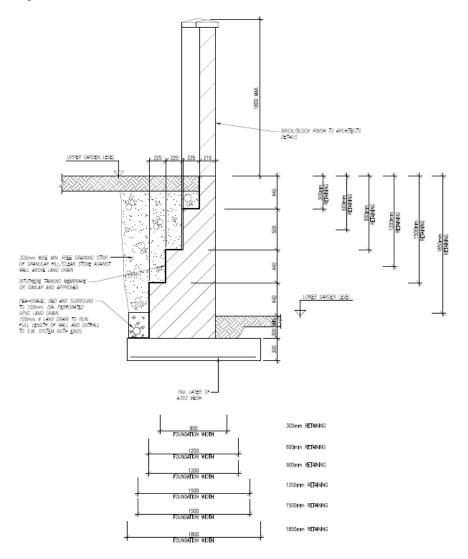
4.3 Foundations Type 3

The sequence of works for the construction of the type 3 foundations will be as follows:

- Excavate to formation level
- Place lean mix to reach foundation level (if required)
- Construct RC Strip footings
- Construct masonry rising walls
- Place and compact approved granular fill to the underside of ground floor slab
- Construct RC Ground Floor Slab

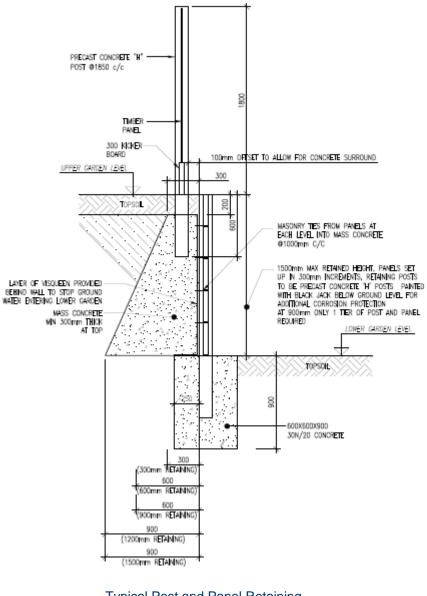
4.4 Foundations Type 4

The sequence of works for the construction of the type 4 foundations will be as follows:

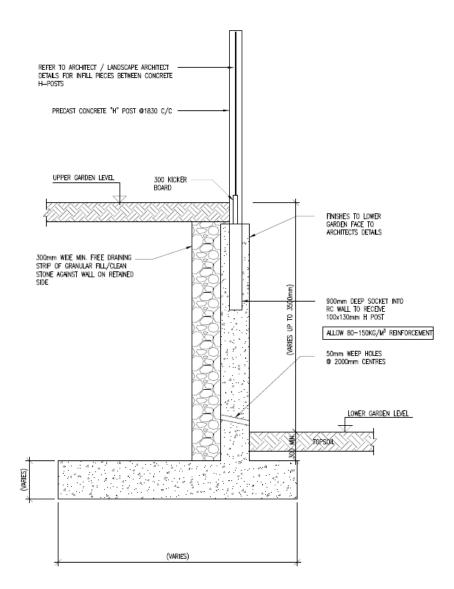

- Excavate to formation level
- Place lean mix to reach foundation level (if required)
- Construct RC Strip footings, basement slab
- Construct concrete/masonry basement/rising walls
- Place and compact approved granular fill to the underside of ground floor slab
- Construct RC Ground Floor Slab

4.5 Civil Works / Retaining Structures

Back of garden areas will be treated with various types of retaining wall structures. The finished boundary structure above above retaining level may vary (blockwork, timber post and panel, railings, etc.) Depending on retained heights, the form of the retaining structure may be as follows:

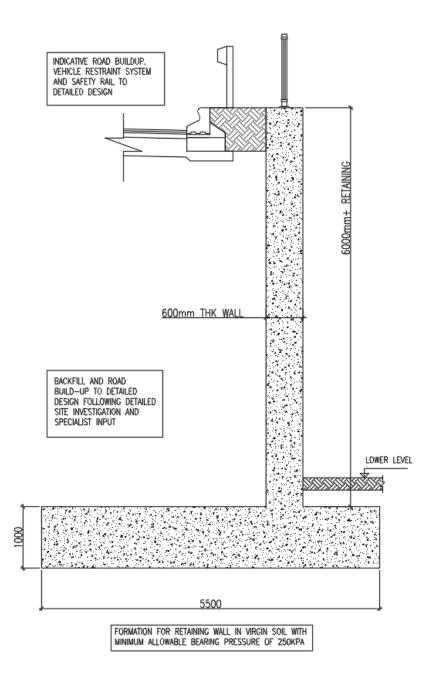

- Post and Panel Retaining (w/Mass Concrete)
 - Up to 1.5m Retaining
- Blockwork Retaining
 - Up to 1.85m Retaining
- Concrete Retaining
 - Up to a maximum of 3.5m

Example retaining sections are included below.



Typical Blockwork Retaining Wall

Planning Stage Structural Report Project Number: 13-119 Document Reference: 13-119.r019 Planning Stage Structural Report



Typical RC Retaining Wall (Up to 3.5m Retaining)

A retaining wall structure is required to support the road area in the East corner of the site where there is fill required in excess of 6m. A preliminary design for this retaining wall is indicated below and the final dimensions will be subject to a detailed site investigation of this area. Design of the soil backfilling to support the road will also be reviewed at detailed design stage.

Retaining Wall for 6m+ at Roadways

4.6 Measures to Protect Adjacent/Nearby Structures

The following measures have been considered in design over the Planning Stage to protect the adjacent/neighbouring structures:

- (1) The extent of basements footprint and depth of basement have been kept to a minimum.
- (2) The basements have been set-out and positioned away from the site boundaries. It is deemed that this is far enough away so that the zone of influence from the basement excavation will not affect the nearby buildings.
- (3) Driven piles shall not be used.
- (4) CFA Piling is proposed to minimise noise and vibration during the works.
- (5) The basement walls will provide a groundwater cut-off and prevent groundwater movement between the basement excavation and surrounding subterranean area. This will mitigate the risk of changes to the existing groundwater levels during construction (subject to the ground investigation and level of the existing groundwater).
- (6) Additional measures will be adopted by the Contractor during construction as per health and safety requirements and best practice.

5. Fire Protection of the Structures

It is currently understood that a 90-minute fire protection will be required generally for the apartments, with 120 minutes required for certain cores and escape routes, and 60 minutes for the houses and duplex apartment blocks, subject to the Fire Consultants Report. 240 minutes is required in electrical ESB substation rooms.

Fire protection to all concrete elements will be achieved as follows, as per IS EN 1992-2:

Core walls and Columns	-	RC concrete cover and minimum element dimensions
Horizontal members and hollowcore slabs	-	RC concrete cover and minimum element dimensions.
120 minute areas	-	RC concrete cover and minimum element dimensions.
240 minute areas	-	RC concrete cover and minimum element dimensions.

6. Proposed Loadings

6.1 Design Loadings and Service Movements

6.1.1 Vertical Loads

These comprise superimposed live loads [due to occupancy, plant, storage, etc.], superimposed dead loads [due to M&E services, etc.] and self-weight of structure plus cladding. Superimposed live loads and dead loads are listed below and the design takes into account structure and cladding self-weight.

6.1.2 Horizontal Loads

These comprise either wind loading on the building façade or ‰HF. Equivalent Horizontal Forces+as defined in Eurocode. EHF loads occur due to lack of fit of the structure, etc. The combination of these two are used in the design in accordance with IS EN 1990.

6.1.3 Service Movements

Horizontal and vertical movements due to superimposed live loads and wind loads are limited to the following:

Horizontal building sway [wind load] =
$$\frac{height}{500}$$

Vertical slab/beam deflections [superimposed live load]:

i] Floor beams =
$$\frac{span}{360}$$

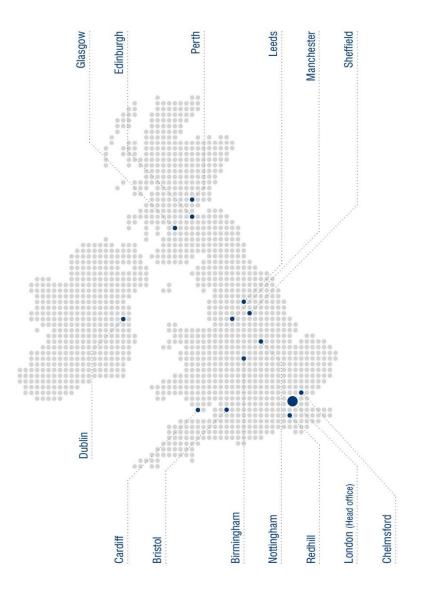
ii]

Slab/Beam supporting cladding = $\frac{span}{500}$ or 10 mm whichever is less.

6.1.4 Loading Table (Subject to Final Confirmations of Superstructure)

А	Typical Apartment Floor	
	200 Precast Slab	3.00 kN/m ²
	75mm Screed	1.80 kN/m ²
	Floor Finishes	0.35 kN/m ²
	Ceiling & Services	<u>0.25 kN/m²</u>
		5.40 kN/m ²
	Imposed load (Class A2)	3.0 kN/m ²
	[Including 1.0kN/m ² partitions]	

В	Typical Podium (Building Footp 750 normal weight slab Finishes 75mm Screed (2000kg/m ³) Floor insulation Ceiling &services	<u>print)</u> 18.75 kN/m ² 0.50 kN/m ² 1.50 kN/m ² 0.05 kN/m ² <u>0.45 kN/m²</u> 21.25 kN/m ²
	imposed load (Class A2) [Including 1.0kN/m ² partitions]	3.0 kN/m ²
С	Typical Podium (Landscaped A 550 normal weight slab Landscaping (TBC) Waterproofing Insulation Ceiling & Services	<u>vrea)</u> 13.75 kN/m ² 10 kN/m ² 0.5 kN/m ² 0.20 kN/m ² <u>0.45 kN/m²</u> 24.9 kN/m ²
	Imposed load (Vehicle Access)	10 kN/m ²
D	Roof Areas 200 Precast Slab 75mm Screed Sedum Waterproofing Insulation	3.00 kN/m ² 1.80 kN/m ² 3.00 kN/m ² 0.30 kN/m ² <u>0.20 kN/m²</u> 8.30 kN/m ²
	imposed load (MEP) Imposed load (PVs) Access/Maintenance	7.5 kN/m ² 3.0 kN/m ² 0.6 kN/m ²
Е	Corridor / Lobby Areas 200 Precast Slab 75mm Screed Floor Finishes Ceiling & Services	3.00 kN/m ² 1.80 kN/m ² 0.35 kN/m ² <u>0.45 kN/m²</u> 5.60 kN/m ²
	Imposed load	5.0 kN/m ²


F Disproportionate Collapse

The structure is in excess of five storeys and therefore will be checked for disproportionate collapse in accordance with IS EN 1991-1-7:2006 Annex A and Building Regulations.

Accidental loading at 34 kN/m² will be applied to "key elements", i.e. columns and beams carrying columns, and criteria in regard to perimeter ties and tying forces.

Planning Stage Structural Report Project Number: 13-119 Document Reference: 13-119.r019 Planning Stage Structural Report

UK and Ireland Office Locations

